
MobiNet - mobiles language (v1.1)

http://www-evasion.imag.fr/mobinet

State variables (or attributes) for a mobile:
x horizontal position
y vertical position

visible is it visible
angle its orientation (in radians)
icon its icon

width its width
height its height

zoom (to tune both values simultaneously)
color its color

red red component of its color
green green component of its color
blue blue component of its color
grey grey component of its color

dx (free; e.g.: vx)
dy (free; e.g.: vy)

mem0..4 (free)

Program
A mobile program is a set of instructions allowing the modification of attributes. These instructions can be
typed in various areas (see the interface guide), which will be executed depending the circumstances (every
time, in case of collision with borders or another mobile, or only at start). The program is accounted for once
“Apply” have been clicked. If it contains error the area display in red, and a message appears at the bottom
of the window. (Note that the mobile will execute the program only if it has been switch on, by clicking on
“Start”). Fore instance, here are 4 instructions which modify different attributes of the current mobile :

x : 50
color : RED
dy : cos(t)
y : y + dy

The last instruction y : y + dy tells that the vertical position of the current mobile must be
increased by the amount of the value of dy . In the 3rd instruction, t represent time.

Here is a summary of available commands :

Functions:
+ - * / sqr sqrt log

sin cos tan asn acs ang exp
norm dist rnd srnd min max
abs int frac sgn mod and or
= < > <= >= <>

Variables and constants:

t dt PI click clicked unclick contact
me next prev mouse collider camera chockx

BLACK WHITE RED GREEN BLUE light (,2,3) chocky
GREY CYAN ORANGE YELLOW PURPLE EMPTY

nearest... ,2,3 _indir(,2,3) _left _right _up _down
key... _space _left _right _up _down

Commands:
: stop start restart like move_to if then else endif trace:

Example:
y : 80*cos(t)
mem1 : 80*sin(t + PI/3)
if y > 0 then

color: GREEN
x : mem1

else
color: RED
x : 0

endif

Note the instruction if : between if and then settles a test. If the test is right, then the following
instructions up to else are executed, otherwise these are the ones between else and endif. The else
can be omitted if there is nothing to do.
Everything can also be written on a single line (note the ‘;’):

if x>0 then color: RED; else color: BLUE; endif

The main functions:

abs(f) computes the absolute value of f
int(f) computes the integer part of f

frac(f) computes the fractionary part of f
sgn(f) computes the sign of f

a mod b computes a modulo b
sqrt(f) computes the square root of |f |
sqr(f) computes f2

sin(f) computes the sinus of f (in radians)
cos(f) computes the cosine of f (in radians)
tan(f) computes the tangent of f (in radians)

ang(a, b) computes the angle (orientation) of vector (a, b)
dist(m,n) computes the distance between mobiles m and n

norm(a, b) computes
√

a2 + b2, norm of vector (a, b)
rnd get a random number between 0 and 1

srnd get a random number between -1 and 1
min(a, b) computes the smallest between a and b
max(a, b) computes the largest between a and b

The other mobiles
A mobile’s program can modify the attributes of his mobile, but not the ones of another mobile. Conversely,
it can read them. Let supposes that the current mobile is mobile 1. We want mobile 1 to have the same
horizontal position than mobile 2. We can write this program for mobile 1 :

x : x2

• The numbers of mobiles that are before and after the current mobile in the list are obtained by prev and
next.

• The number of the current mobile is obtained by me.
• The number of the mobile closest (on screen) to the current mobile is obtained by nearest

(one can also use the shortcut pp).
• In case of collision, the number of the collided mobile is obtained by collider.

The various kinds of mobiles:

m prev me mouse EMPTY nearest
m@n next collider camera light (nearest variations)

The mouse
It is also a mobile. One cannot modify its attributes. But one can easily program a mobile to follow the
mouse : m: mouse

y : xmouse or x : xm
y : ymouse y : ym

One can also known its direction and speed using dxmouse et dymouse .
Moreover, one can know if the mouse button have been clicked by if click then, if it has been released
by if unclick then, if it is still pressed by if clicked then.

The camera
It is also a mobile ! One can change its position (e.g.: xcamera: xmouse), its zoom (zoom camera:
2), its angle (to rotate the view)...
Moreover, clear screen can be disabled by visible camera: 1 to let objects make a visible trace
along their trajectory, which allows tracing curves (shortcut: trace: 1).
Remark: the camera is reseted when “reset” is clicked.

Lights
Similarly, one can change the light color (e.g. : color light: RED or grey light:
(1+sin(t))/2) and its direction (e.g.: x light: x1; y light: y1; height light:
10). Initially the light height is infinity. Two extra lights light2 and light3 are available, initially
off (i.e. black color).

Reading the attributes of a mobile managed on a distant computer
For instance we want that our mobile take the color of mobile 3 on station 15.
this writes: color : color3@15

m@n is the mobile number m on computer (or “station”) number n (quite like an email address). NB: for
this mobile m@n to be reachable, its computer n must have exported it (by clicking on “Export”), and that
you import its mobiles by clicking on its station number n in the strip “Visualize”. It is then also accounted
for by the commands like nearest.

Local variables
One can use any word to store a value (intermediate variable):
object : mouse // object is now a synonym for mouse
d : dist(me,object) // d contains the distance to the mouse
x : x + 3*(x-xobject)/d // move in the mouse direction with length 3
y : y + 3*(y-yobject)/d

Remarks on attributes
Icons:
Note that icons 0 to 9 figure digits 0 to 9, which eases the construction of counters.

Width, height:
Attention, it is a zoom factor relative to the initial size of the icon. Most icons have an initial size of about
10.

Angle:
Here also, it is the rotation angle relative to initial orientation, which can be either horizontal or vertical
depending on icons. NB: all angles in MobiNet are in radians.

Colors:
color only allows to provide a color name. To tune or obtain precisely the RGB color, derived attributes
red , green , blue (and also grey) are available.

Collisions
They are managed in the “Collision” area. Various extra variable are available: collider gives the
number of the collided mobile. So one can test this variable if reaction should depend on the mobile. E.g.:
if collider=2, or if collider=2@3, or if color collider = BLUE . Note that it is often
simpler to test the icon or the color of the mobile - corresponding to its category - rather than is number.

For advance use, also available are: the variable contact which tells whether we are treating this
collision for the first time, and the collision vector chockx,chockywhich encodes the angle of the mobiles
contact. See for instance how the preset “choc” uses it.

Remark: there is always a risk that collision occurs again at the next step. Testing contact allows
to avoid treating twice the collision (e.g. bouncing twice would produce a wrong direction). Another
technique, also usable for collisions with borders, consist in uncolliding before treating, doing for instance
x: x-dx ; y : y-dy. Remind that collisions are a difficult task in computer sciences, and that it is
difficult to produce a perfect behavior (especially with fast motions).

Interaction between mobiles
Acting on another mobile:

One cannot modify the attributes of another mobile (it can only be displaced using the command
move_to(m,x,y)). But one can act on its state using the commands stop m to stop it, start m
to start it, or restart m to restart it even if it was already on.

When this mobile m restart, it first executes its “Start” program (if you entered a program in this area).
this is useful to kick-off a ball which would have gone out of the terrain, for instance. But this also allows
to send signals to mobiles: for instance, a counter can be incremented remotely using restart, by putting
icon: icon+1 in its “Start” area.

Imitating the behavior of another mobile:

When several mobiles share the same behavior, on can tell for each necessary area to refer to the
corresponding area of the reference mobile, using the command like m (where m is a mobile running
on the same station).

Chasing, running away:

nearest allows to ‘see’ which is the nearest mobile, in order to get closer or further for instance.
Numerous variants of this function allow to get a smarter behavior: nearest2 and 3 allow to ‘see’
what comes in second or third. nearest_left allows to look only in the west quadrant, etc.
nearest_indir(vx,vy,ang) looks only in direction (vx, vy) with a field of view aperture of ang.
(Shortcuts: pp, pp2, pp3, ppg, ppd, pph, ppb, ppv, ppv2, ppv3).
ATTENTION: in this case, there might have no mobile in sight. So care should be taken to test whether the
command really found a mobile:

m: nearest_indir(dx,dy,Pi/2)
if m <> EMPTY then

(run away or attack)
endif

Launching MobiNet
If the network is not used (personal use, or non-collaborative use in lab without master station), simply launch
MobiNet.

In the other cases, first launch MobiNet on the master station, then launch mobile -client
master_station_name on the others. (For a distant computer, the name is the full Internet address).
NB: in the case of a tutorial with students, the teacher should probably add (first) the option -nosave to
forbid saving files.

